Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(11): eadh9547, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489372

RESUMO

Solid tumors, especially those with aberrant MYCN activation, often harbor an immunosuppressive microenvironment to fuel malignant growth and trigger treatment resistance. Despite this knowledge, there are no effective strategies to tackle this problem. We found that chemokine-like factor (CKLF) is highly expressed by various solid tumor cells and transcriptionally up-regulated by MYCN. Using the MYCN-driven high-risk neuroblastoma as a model system, we demonstrated that as early as the premalignant stage, tumor cells secrete CKLF to attract CCR4-expressing CD4+ cells, inducing immunosuppression and tumor aggression. Genetic depletion of CD4+ T regulatory cells abolishes the immunorestrictive and protumorigenic effects of CKLF. Our work supports that disrupting CKLF-mediated cross-talk between tumor and CD4+ suppressor cells represents a promising immunotherapeutic approach to battling MYCN-driven tumors.


Assuntos
Quimiocinas , Proteínas com Domínio MARVEL , Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Humanos , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas com Domínio MARVEL/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neuroblastoma/terapia , Microambiente Tumoral
3.
J Immunother Cancer ; 10(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36521927

RESUMO

BACKGROUND: Immunotherapy in high-risk neuroblastoma (HR-NBL) does not live up to its full potential due to inadequate (adaptive) immune engagement caused by the extensive immunomodulatory capacity of HR-NBL. We aimed to tackle one of the most notable immunomodulatory processes in neuroblastoma (NBL), absence of major histocompatibility complex class I (MHC-I) surface expression, a process greatly limiting cytotoxic T cell engagement. We and others have previously shown that MHC-I expression can be induced by cytokine-driven immune modulation. Here, we aimed to identify tolerable pharmacological repurposing strategies to upregulate MHC-I expression and therewith enhance T cell immunogenicity in NBL. METHODS: Drug repurposing libraries were screened to identify compounds enhancing MHC-I surface expression in NBL cells using high-throughput flow cytometry analyses optimized for adherent cells. The effect of positive hits was confirmed in a panel of NBL cell lines and patient-derived organoids. Compound-treated NBL cell lines and organoids were cocultured with preferentially expressed antigen of melanoma (PRAME)-reactive tumor-specific T cells and healthy-donor natural killer (NK) cells to determine the in vitro effect on T cell and NK cell cytotoxicity. Additional immunomodulatory effects of histone deacetylase inhibitors (HDACi) were identified by transcriptome and translatome analysis of treated organoids. RESULTS: Drug library screening revealed MHC-I upregulation by inhibitor of apoptosis inhibitor (IAPi)- and HDACi drug classes. The effect of IAPi was limited due to repression of nuclear factor kappa B (NFκB) pathway activity in NBL, while the MHC-I-modulating effect of HDACi was widely translatable to a panel of NBL cell lines and patient-derived organoids. Pretreatment of NBL cells with the HDACi entinostat enhanced the cytotoxic capacity of tumor-specific T cells against NBL in vitro, which coincided with increased expression of additional players regulating T cell cytotoxicity (eg, TAP1/2 and immunoproteasome subunits). Moreover, MICA and MICB, important in NK cell cytotoxicity, were also increased by entinostat exposure. Intriguingly, this increase in immunogenicity was accompanied by a shift toward a more mesenchymal NBL cell lineage. CONCLUSIONS: This study indicates the potential of combining (immuno)therapy with HDACi to enhance both T cell-driven and NKcell-driven immune responses in patients with HR-NBL.


Assuntos
Células Matadoras Naturais , Neuroblastoma , Humanos , Linhagem da Célula , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Antígenos de Histocompatibilidade Classe I , Linfócitos T Citotóxicos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Epigênese Genética
4.
Nat Cancer ; 3(10): 1228-1246, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36138189

RESUMO

Apart from the anti-GD2 antibody, immunotherapy for neuroblastoma has had limited success due to immune evasion mechanisms, coupled with an incomplete understanding of predictors of response. Here, from bulk and single-cell transcriptomic analyses, we identify a subset of neuroblastomas enriched for transcripts associated with immune activation and inhibition and show that these are predominantly characterized by gene expression signatures of the mesenchymal lineage state. By contrast, tumors expressing adrenergic lineage signatures are less immunogenic. The inherent presence or induction of the mesenchymal state through transcriptional reprogramming or therapy resistance is accompanied by innate and adaptive immune gene activation through epigenetic remodeling. Mesenchymal lineage cells promote T cell infiltration by secreting inflammatory cytokines, are efficiently targeted by cytotoxic T and natural killer cells and respond to immune checkpoint blockade. Together, we demonstrate that distinct immunogenic phenotypes define the divergent lineage states of neuroblastoma and highlight the immunogenic potential of the mesenchymal lineage.


Assuntos
Adrenérgicos , Neuroblastoma , Humanos , Linhagem da Célula/genética , Inibidores de Checkpoint Imunológico , Neuroblastoma/genética , Citocinas/genética , Fenótipo
5.
Cell Rep ; 36(2): 109363, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260934

RESUMO

Although activating mutations of the anaplastic lymphoma kinase (ALK) membrane receptor occur in ∼10% of neuroblastoma (NB) tumors, the role of the wild-type (WT) receptor, which is aberrantly expressed in most non-mutated cases, is unclear. Both WT and mutant proteins undergo extracellular domain (ECD) cleavage. Here, we map the cleavage site to Asn654-Leu655 and demonstrate that cleavage inhibition of WT ALK significantly impedes NB cell migration with subsequent prolongation of survival in mouse models. Cleavage inhibition results in the downregulation of an epithelial-to-mesenchymal transition (EMT) gene signature, with decreased nuclear localization and occupancy of ß-catenin at EMT gene promoters. We further show that cleavage is mediated by matrix metalloproteinase 9, whose genetic and pharmacologic inactivation inhibits cleavage and decreases NB cell migration. Together, our results indicate a pivotal role for WT ALK ECD cleavage in NB pathogenesis, which may be harnessed for therapeutic benefit.


Assuntos
Quinase do Linfoma Anaplásico/química , Quinase do Linfoma Anaplásico/metabolismo , Movimento Celular , Neuroblastoma/patologia , Sequência de Aminoácidos , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glicina/química , Células HEK293 , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Células NIH 3T3 , Invasividade Neoplásica , Neuroblastoma/genética , Ligação Proteica , Domínios Proteicos
6.
Nature ; 579(7799): 415-420, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32188940

RESUMO

Cleavage of the gasdermin proteins to produce pore-forming amino-terminal fragments causes inflammatory cell death (pyroptosis)1. Gasdermin E (GSDME, also known as DFNA5)-mutated in familial ageing-related hearing loss2-can be cleaved by caspase 3, thereby converting noninflammatory apoptosis to pyroptosis in GSDME-expressing cells3-5. GSDME expression is suppressed in many cancers, and reduced GSDME levels are associated with decreased survival as a result of breast cancer2,6, suggesting that GSDME might be a tumour suppressor. Here we show that 20 of 22 tested cancer-associated GSDME mutations reduce GSDME function. In mice, knocking out Gsdme in GSDME-expressing tumours enhances, whereas ectopic expression in Gsdme-repressed tumours inhibits, tumour growth. This tumour suppression is mediated by killer cytotoxic lymphocytes: it is abrogated in perforin-deficient mice or mice depleted of killer lymphocytes. GSDME expression enhances the phagocytosis of tumour cells by tumour-associated macrophages, as well as the number and functions of tumour-infiltrating natural-killer and CD8+ T lymphocytes. Killer-cell granzyme B also activates caspase-independent pyroptosis in target cells by directly cleaving GSDME at the same site as caspase 3. Uncleavable or pore-defective GSDME proteins are not tumour suppressive. Thus, tumour GSDME acts as a tumour suppressor by activating pyroptosis, enhancing anti-tumour immunity.


Assuntos
Neoplasias/imunologia , Neoplasias/patologia , Receptores de Estrogênio/metabolismo , Animais , Apoptose , Ácido Aspártico/metabolismo , Linhagem Celular Tumoral , Feminino , Granzimas/metabolismo , Humanos , Mutação com Perda de Função , Camundongos , Neoplasias/genética , Piroptose , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Linfócitos T Citotóxicos/imunologia
7.
Cell Stem Cell ; 26(4): 579-592.e6, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32142683

RESUMO

Neuroblastoma (NB), derived from the neural crest (NC), is the most common pediatric extracranial solid tumor. Here, we establish a platform that allows the study of human NBs in mouse-human NC chimeras. Chimeric mice were produced by injecting human NC cells carrying NB relevant oncogenes in utero into gastrulating mouse embryos. The mice developed tumors composed of a heterogenous cell population that resembled that seen in primary NBs of patients but were significantly different from homogeneous tumors formed in xenotransplantation models. The human tumors emerged in immunocompetent hosts and were extensively infiltrated by mouse cytotoxic T cells, reflecting a vigorous host anti-tumor immune response. However, the tumors blunted the immune response by inducing infiltration of regulatory T cells and expression of immune-suppressive molecules similar to escape mechanisms seen in human cancer patients. Thus, this experimental platform allows the study of human tumor initiation, progression, manifestation, and tumor-immune-system interactions in an animal model system.


Assuntos
Crista Neural , Neuroblastoma , Animais , Criança , Quimera , Modelos Animais de Doenças , Humanos , Camundongos
8.
Nature ; 572(7771): 676-680, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31391581

RESUMO

The CCCTC-binding factor (CTCF), which anchors DNA loops that organize the genome into structural domains, has a central role in gene control by facilitating or constraining interactions between genes and their regulatory elements1,2. In cancer cells, the disruption of CTCF binding at specific loci by somatic mutation3,4 or DNA hypermethylation5 results in the loss of loop anchors and consequent activation of oncogenes. By contrast, the germ-cell-specific paralogue of CTCF, BORIS (brother of the regulator of imprinted sites, also known as CTCFL)6, is overexpressed in several cancers7-9, but its contributions to the malignant phenotype remain unclear. Here we show that aberrant upregulation of BORIS promotes chromatin interactions in ALK-mutated, MYCN-amplified neuroblastoma10 cells that develop resistance to ALK inhibition. These cells are reprogrammed to a distinct phenotypic state during the acquisition of resistance, a process defined by the initial loss of MYCN expression followed by subsequent overexpression of BORIS and a concomitant switch in cellular dependence from MYCN to BORIS. The resultant BORIS-regulated alterations in chromatin looping lead to the formation of super-enhancers that drive the ectopic expression of a subset of proneural transcription factors that ultimately define the resistance phenotype. These results identify a previously unrecognized role of BORIS-to promote regulatory chromatin interactions that support specific cancer phenotypes.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/genética , Animais , Fator de Ligação a CCCTC/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Camundongos , Terapia de Alvo Molecular , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/enzimologia , Neuroblastoma/genética , Fenótipo , Ligação Proteica
9.
Trends Cancer ; 3(4): 269-281, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28718439

RESUMO

Transcriptional deregulation is one of the core tenets of cancer biology and is underpinned by alterations in both protein-coding genes and noncoding regulatory elements. Large regulatory elements, so-called super-enhancers (SEs), are central to the maintenance of cancer cell identity and promote oncogenic transcription to which cancer cells become highly addicted. Such dependence on SE-driven transcription for proliferation and survival offers an Achilles heel for the therapeutic targeting of cancer cells. Indeed, inhibition of the cellular machinery required for the assembly and maintenance of SEs dampens oncogenic transcription and inhibits tumor growth. In this article, we review the organization, function, and regulation of oncogenic SEs and their contribution to the cancer cell state.


Assuntos
Neoplasias/genética , Transcrição Gênica , Humanos
10.
Proc Natl Acad Sci U S A ; 114(19): 4942-4947, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28439018

RESUMO

The retinoblastoma protein (Rb) and the homologous pocket proteins p107 and p130 negatively regulate cell proliferation by binding and inhibiting members of the E2F transcription factor family. The structural features that distinguish Rb from other pocket proteins have been unclear but are critical for understanding their functional diversity and determining why Rb has unique tumor suppressor activities. We describe here important differences in how the Rb and p107 C-terminal domains (CTDs) associate with the coiled-coil and marked-box domains (CMs) of E2Fs. We find that although CTD-CM binding is conserved across protein families, Rb and p107 CTDs show clear preferences for different E2Fs. A crystal structure of the p107 CTD bound to E2F5 and its dimer partner DP1 reveals the molecular basis for pocket protein-E2F binding specificity and how cyclin-dependent kinases differentially regulate pocket proteins through CTD phosphorylation. Our structural and biochemical data together with phylogenetic analyses of Rb and E2F proteins support the conclusion that Rb evolved specific structural motifs that confer its unique capacity to bind with high affinity those E2Fs that are the most potent activators of the cell cycle.


Assuntos
Fatores de Transcrição E2F/química , Proteína do Retinoblastoma/química , Proteína p107 Retinoblastoma-Like/química , Cristalografia por Raios X , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Humanos , Domínios Proteicos , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Proteína p107 Retinoblastoma-Like/genética , Proteína p107 Retinoblastoma-Like/metabolismo
11.
Biochim Biophys Acta ; 1849(10): 1289-97, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26319102

RESUMO

The retinoblastoma tumor suppressor (RB) and its related family members p107 and p130 regulate cell proliferation through the transcriptional repression of genes involved in cellular G1 to S phase transition. However, RB proteins are functionally versatile, and numerous genetic and biochemical studies point to expansive roles in cellular growth control, pluripotency, and apoptotic response. For the vast majority of genes, RB family members target the E2F family of transcriptional activators as an integral component of its gene regulatory mechanism. These interactions are regulated via reversible phosphorylation by Cyclin/Cyclin-dependent kinase (Cdk) complexes, a major molecular mechanism that regulates transcriptional output of RB/E2F target genes. Recent studies indicate an additional level of regulation involving the ubiquitin-proteasome system that renders pervasive control over each component of the RB pathway. Disruption of the genetic circuitry for proteasome-mediated targeting of the RB pathway has serious consequences on development and cellular transformation, and is associated with several forms of human cancer. In this review, we discuss the role of the ubiquitin-proteasome system in proteolytic control of RB-E2F pathway components, and recent data that points to surprising non-proteolytic roles for the ubiquitin-proteasome system in novel transcriptional regulatory mechanisms.


Assuntos
Fatores de Transcrição E2F/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteína do Retinoblastoma/genética , Ubiquitina/genética , Proteína Substrato Associada a Crk/genética , Proteína Substrato Associada a Crk/metabolismo , Quinases Ciclina-Dependentes/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição E2F/metabolismo , Regulação da Expressão Gênica , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína p107 Retinoblastoma-Like/genética , Proteína p107 Retinoblastoma-Like/metabolismo , Transcrição Gênica
12.
J Biol Chem ; 290(23): 14462-75, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25903125

RESUMO

The retinoblastoma (RB) tumor suppressor and related family of proteins play critical roles in development through their regulation of genes involved in cell fate. Multiple regulatory pathways impact RB function, including the ubiquitin-proteasome system with deregulated RB destruction frequently associated with pathogenesis. With the current study we explored the mechanisms connecting proteasome-mediated turnover of the RB family to the regulation of repressor activity. We find that steady state levels of all RB family members, RB, p107, and p130, were diminished during embryonic stem cell differentiation concomitant with their target gene acquisition. Proteasome-dependent turnover of the RB family is mediated by distinct and autonomously acting instability elements (IE) located in their C-terminal regulatory domains in a process that is sensitive to cyclin-dependent kinase (CDK4) perturbation. The IE regions include motifs that contribute to E2F-DP transcription factor interaction, and consistently, p107 and p130 repressor potency was reduced by IE deletion. The juxtaposition of degron sequences and E2F interaction motifs appears to be a conserved feature across the RB family, suggesting the potential for repressor ubiquitination and specific target gene regulation. These findings establish a mechanistic link between regulation of RB family repressor potency and the ubiquitin-proteasome system.


Assuntos
Proteína do Retinoblastoma/análise , Proteína do Retinoblastoma/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Sequência Conservada , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Evolução Molecular , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Transcrição Gênica
13.
PLoS One ; 6(3): e17877, 2011 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-21437292

RESUMO

To our knowledge, there is no report on long-term reproductive and developmental side effects in the offspring of mothers treated with a widely used chemotherapeutic drug such as doxorubicin (DXR), and neither is there information on transmission of any detrimental effects to several filial generations. Therefore, the purpose of the present paper was to examine the long-term effects of a single intraperitoneal injection of DXR on the reproductive and behavioral performance of adult female mice and their progeny. C57BL/6 female mice (generation zero; G0) were treated with either a single intraperitoneal injection of DXR (G0-DXR) or saline (G0-CON). Data were collected on multiple reproductive parameters and behavioral analysis for anxiety, despair and depression. In addition, the reproductive capacity and health of the subsequent six generations were evaluated. G0-DXR females developed despair-like behaviors; delivery complications; decreased primordial follicle pool; and early lost of reproductive capacity. Surprisingly, the DXR-induced effects in oocytes were transmitted transgenerationally; the most striking effects being observed in G4 and G6, constituting: increased rates of neonatal death; physical malformations; chromosomal abnormalities (particularly deletions on chromosome 10); and death of mothers due to delivery complications. None of these effects were seen in control females of the same generations. Long-term effects of DXR in female mice and their offspring can be attributed to genetic alterations or cell-killing events in oocytes or, presumably, to toxicosis in non-ovarian tissues. Results from the rodent model emphasize the need for retrospective and long-term prospective studies of survivors of cancer treatment and their offspring.


Assuntos
Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Hereditariedade/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Ansiedade/tratamento farmacológico , Atrofia , Comportamento Animal/efeitos dos fármacos , Deleção Cromossômica , Cromossomos de Mamíferos/genética , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Feminino , Hereditariedade/genética , Hereditariedade/fisiologia , Humanos , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miométrio/efeitos dos fármacos , Miométrio/patologia , Oócitos/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/patologia , Folículo Ovariano/transplante , Ovulação/efeitos dos fármacos , Fenótipo , Reprodução/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Esfingosina/uso terapêutico , Útero/efeitos dos fármacos , Útero/patologia , Proteína X Associada a bcl-2/deficiência , Proteína X Associada a bcl-2/metabolismo
14.
PLoS One ; 5(5): e10622, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20485553

RESUMO

During blastocyst formation the segregation of the inner cell mass (ICM) and trophectoderm is governed by the mutually antagonistic effects of the transcription factors Oct4 and Cdx2. Evidence indicates that suppression of Oct4 expression in the trophectoderm is mediated by Cdx2. Nonetheless, the underlying epigenetic modifiers required for Cdx2-dependent repression of Oct4 are largely unknown. Here we show that the chromatin remodeling protein Brg1 is required for Cdx2-mediated repression of Oct4 expression in mouse blastocysts. By employing a combination of RNA interference (RNAi) and gene expression analysis we found that both Brg1 Knockdown (KD) and Cdx2 KD blastocysts exhibit widespread expression of Oct4 in the trophectoderm. Interestingly, in Brg1 KD blastocysts and Cdx2 KD blastocysts, the expression of Cdx2 and Brg1 is unchanged, respectively. To address whether Brg1 cooperates with Cdx2 to repress Oct4 transcription in the developing trophectoderm, we utilized preimplantation embryos, trophoblast stem (TS) cells and Cdx2-inducible embryonic stem (ES) cells as model systems. We found that: (1) combined knockdown (KD) of Brg1 and Cdx2 levels in blastocysts resulted in increased levels of Oct4 transcripts compared to KD of Brg1 or Cdx2 alone, (2) endogenous Brg1 co-immunoprecipitated with Cdx2 in TS cell extracts, (3) in blastocysts Brg1 and Cdx2 co-localize in trophectoderm nuclei and (4) in Cdx2-induced ES cells Brg1 and Cdx2 are recruited to the Oct4 promoter. Lastly, to determine how Brg1 may induce epigenetic silencing of the Oct4 gene, we evaluated CpG methylation at the Oct4 promoter in the trophectoderm of Brg1 KD blastocysts. This analysis revealed that Brg1-dependent repression of Oct4 expression is independent of DNA methylation at the blastocyst stage. In toto, these results demonstrate that Brg1 cooperates with Cdx2 to repress Oct4 expression in the developing trophectoderm to ensure normal development.


Assuntos
Blastocisto/metabolismo , DNA Helicases/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Blastocisto/citologia , Fator de Transcrição CDX2 , DNA Helicases/genética , Metilação de DNA/genética , Ectoderma/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Camundongos , Modelos Biológicos , Proteínas Nucleares/genética , Fator 3 de Transcrição de Octâmero/genética , Ligação Proteica , Transporte Proteico , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Transcrição Gênica
15.
Indian J Physiol Pharmacol ; 52(1): 19-30, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18831349

RESUMO

Several lines of evidence suggest that human uterine endometrial cells can bind human chorionic gonadotropin (hCG) which, in turn, influences the physiology of implantation stage endometrium. Vascular endothelial growth factor (VEGF) appears to be a candidate mediator in this process. However, our knowledge about hCG action on VEGF in human endometrial cells is very thin. In the present study, we have examined microscopically hCG binding to dissociated human endometrial cells collected from mid-luteal phase and maintained in three-dimensional primary co-culture on rat-tail collagen type I biomatrix and examined the effect of different concentrations (0, 1, 10, 100 and 1000 IU/ML) of hCG on VEGF expression and secretion by endometrial cells maintained in the above system. We report that both cytokeratin positive epithelial cells as well as vimetin positive stromal cells from human mid luteal phase endometrium could bind hCG and that their number increased (P < 0.01) steadily with time. Administration of hCG enhanced (P < 0.05) immunoreactive VEGF protein expression in dose dependent manner in endometrial cells retrieved from mid-luteal phase of cycle, and co-cultured in a three-dimensional cell culture system, but with no marked change in VEGF secretion. Collectively, it appears that hCG influences VEGF protein synthesis in human midluteal phase endometrial cells, but has little effect on post-translational regulation and secretion. From physiological homeostasis point of view, it is likely that synthesis and secretion of VEGF exhibits a modular and factorial regulation to achieve a fine tuning of this potent vasotropic agent in receptive stage endometrium.


Assuntos
Gonadotropina Coriônica/farmacologia , Endométrio/citologia , Endométrio/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Adulto , Biotina/química , Biotina/metabolismo , Western Blotting , Técnicas de Cultura de Células , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Endométrio/efeitos dos fármacos , Feminino , Humanos , Imunoensaio , Imuno-Histoquímica , Fase Luteal/fisiologia , Microscopia Confocal , Sais de Tetrazólio , Tiazóis , Fixação de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...